
International Journal of Heat and Mass Transfer 47 (2004) 2217–2231

www.elsevier.com/locate/ijhmt
A pressure based Eulerian–Eulerian multi-phase model
for non-equilibrium condensation in transonic steam flow

A.G. Gerber a,*, M.J. Kermani b

a Department of Mechanical Engineering, University of New Brunswick, Fredericton, Canada
b Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz, Iran

Received 19 August 2003; received in revised form 17 November 2003
Abstract

A model for homogeneous nucleation in high-speed transonic flow and applicable to the wet stages of a steam

turbine is presented. The model, implemented within a full Navier–Stokes viscous flow solution procedure, employs a

pressure based finite-volume/finite-element discretization of the governing equations of fluid motion. Eulerian multi-

phase equations, governing both the vapor and liquid phases, are formulated utilizing Classical nucleation theory and

the concept of droplet interfacial area density. For the mass conservation of liquid a scalar equation is derived which

includes the dispersive motion of the droplets due to turbulent unsteadiness. The solution strategy applies implicit time

integration with no constraints on the time-step. Convergence strategies with the highly non-linear homogeneous

nucleation process are described. These equations are applied to predict the moisture distribution in low- and high-

pressure steam flow in a Laval nozzle and 2D rotor-tip section of a stage turbine.
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1. Introduction

In the power industry the steam turbine remains an

important component for the efficient production of

power. The low-pressure turbine stages are of particular

interest since they produce the largest portion of the

power (across all of the stages), and yet are susceptible

to additional losses due to the presence of a second

phase. Thermodynamic irreversible losses, generated

with non-equilibrium conditions and phase change, are

significant to the low-pressure stage efficiency since for

every additional percent of wetness the efficiency is re-

duced by approximately 1% [1] (this estimate of ther-

modynamic loss, although proposed in 1921, is still in

wide use today). Here phase change occurs at high vapor

velocities (transonic) and high expansion rates such that

the available droplet surface area necessary to bring (or
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maintain) the flow at near thermodynamic equilibrium

must come from a fine mist of droplets formed by

homogeneous nucleation.

The modelling of nucleating steam behavior has been

ongoing for several decades, and originally was focused

on one-dimensional flow in Laval nozzles [2,3], where

this geometry was well suited to studying the droplet

formation behavior experimentally. However, since the

real flow behavior in turbines is considerably more

complex more advanced methods for two-dimensional

calculations were developed [4,5]. These methods were

based on inviscid time marching schemes with a

Lagrangian tracking module included to track the par-

ticle motion explicitly. To support these models experi-

ments were conducted on 2D blade shapes to verify

predicted blade pressure profiles, thermodynamic losses

(or efficiencies) and droplet size predictions [6–8]. The

Eulerian/Lagrangian approach was further applied to

the full Navier–Stokes equations in an approach more

closely following multi-phase flow principles [9,10], and

included 3D flow calculations for a low-pressure stage.
ed.
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Nomenclature

a droplet surface area (¼ 4pr2), m2

c a non-dimensional constant, Eq. (12)

C speed of sound, m/s

cp specific heat of liquid, or vapor isobaric

specific heat, J/kgK

cv vapor isochoric specific heat, J/kgK

EOS equation of state

f mass fraction of liquid to vapor

(¼ 0.03) 0.06 kgf /kgg), Eq. (38)

h static enthalpy, J/kg

H total enthalpy, J/kg

J nucleation rate, droplet #’s/m3 s

k thermal conductivity, W/mK

K Boltzmann’s constant (¼ 1.3807 · 10�23 J/K)

Kn Knudsen number, Eq. (12)

m mass, kg

Mach Mach number

N number of droplets per unit mass of vapor

(¼ droplet #’s/mg), Eq. (20), droplet #’s/kgg
Nu Nusselt number (¼ 2rk=k)
p pressure, N/m2

Pr Prandtl number (¼ lcp=k)
qc condensation coefficient (¼ 1 in the present

computation)

r droplet radius, m

r� droplet critical radius (droplet radius at

nucleation), m

R gas constant (¼ 461.4 J/kgK), or residual

for the scalar equation /, Eq. (40)
S general discrete equation source term, Eq.

(39)

Sd energy equation source term due to viscous

dissipation, Eq. (4), W/m3

SF source term for momentum equation with

smallest contribution from viscous gradi-

ents, Eq. (3), N/m3

Sh source term for the interphase energy

transfer (¼ �Sahp), Eqs. (4) and (29),

W/m3

Sm source term for the interphase mass transfer

(¼ �Sa), Eqs. (1) and (27), kg/m3 s

SN source term for the droplet numbers (¼ J ),
Eqs. (20) and (26), droplet #’s/m3 s

Su source term for the interphase momentum

transfer (¼ �Sau), Eqs. (2) and (28), N/m3

Sw energy equation source term due to useful

viscous work, Eq. (4), W/m3

Sa source term representing the condensation

rate of vapor, Eqs. (19) and (25), kg/m3 s

S/ source term of a general scalar equation, Eq.

(31)

t time, s

T temperature, K

u velocity, m/s

V volume of a single control volume, Eq. (31)

and Fig. 1, m3

x spatial dimension, m

Greek symbols

a mass fraction of liquid water to water vapor

(¼mf=mg), kgf /kgg
b interfacial area density (sum of interfacial

surface areas of all droplets per unit mass of

the vapor), m2/kgg
c vapor specific heat ratio

Ct turbulent diffusion coefficient of the liquid

scalar equation a, Eq. (19), kg/m s

C/ diffusion coefficient in the discretized equa-

tion for a general scalar variable /, Eq. (31)
d Kronecker delta function

Dn outward unit vector of the discrete surface,

Eqs. (31) and (32)

Dt time step, Eq. (31), s

DT integration time interval, Eq. (15), s

DG bulk Gibbs free energy change, Eqs. (6) and

(A.4), J/kg

� turbulent dissipation, m2/s3

g correction parameter, Eq. (8)

j turbulent kinetic energy, m2/s2

k convective heat transfer coefficient, W/m2 K

l dynamic viscosity, kg/m s

q density, kg/m3

r liquid surface tension, N/m

s stress, N/m2

/ general scalar variable (2 f1; a; ui; etc:g),
Eqs. (14), (15) and (31)

Subscripts

cv control volume

eff effective (laminar + turbulent)

f fluid (liquid)

g gas (vapor)

ijk tensor notation

ip integration point

nb neighboring node

p droplet

P nodal point

s saturated state

sc vapor supercooling, Eq. (9)

t turbulent

Superscripts

o property evaluation at old time values, or

passive source term of a general scalar

equation, Eq. (33)
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(b) Favre-averaging of a scalar variable, Eq.

(14)

(�) rate of change of a variable, s�1

ð Þ average of a variable, or time-averaging of a

conservative variable, Eq. (15)
0 fluctuating term in time-averaging of a var-

iable (ð Þ0 ¼ ð Þ � ð ÞÞ, change in dependent

variable, or active coefficient of general

source term, oS/=o/, Eq. (33)
00 fluctuating term in Favre-averaging of a

variable (ð Þ00 ¼ ð Þ � ðbÞ)
! vector
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The approach of coupling the Eulerian phase calcu-

lations with explicit droplet integration (i.e. Lagrangian)

of the liquid phase suffers when scaling to large three-

dimensional flow situations, in particular multi-stage

transient flow behavior. For this reason development in

the past years has begun to focus on Eulerian/Eulerian

schemes for condensing steam flows [11,12]. Such

schemes lend themselves more naturally to parallel

computing and large transient multi-stage flow calcula-

tions. The draw back is the loss in accuracy, since the

volumetric averaging of the droplet phase equations

leads to a less direct evaluation of particle/vapor

behavior, particularly in the region of the nucleation

zone where flow conditions change very rapidly. It also

will be more challenging to evaluate quantitatively

thermodynamic losses since the contribution of the dis-

cretization error needs to be more carefully accounted

for [13–15].

The contribution of the present paper is that an

Eulerian–Eulerian method is presented for homoge-

neously nucleating viscous turbulent steam flow at

transonic conditions, and amenable to low- and high-

pressure steam turbines. The method is also unique in

that a pressure-based finite-volume/finite-element ap-

proach is utilized for the present computation, and an

implicit time marching scheme, capable of taking large

time steps, is used. The results presented are based on

the previous work presented in [9,10], utilizing the same

thermodynamic database, and the same computational-

fluid dynamics (CFD) solver, but describing a different

formulation for predicting moisture.
2. Governing equations

For the presentation of the governing equations, a

brief description of conditions leading to droplet for-

mation is required. To begin with homogeneous nucle-

ation in condensing steam occurs at significant levels of

supercooling when fluid expansion rates are high. In the

case of steam, supercooling levels, defined here as

the difference between the local vapor temperature and

the saturation temperature (set by the local pressure),

in the vicinity of 40 K are achievable. Although heter-

ogeneous droplet formation is active in the flow, the
required droplet surface area to achieve reversion to

equilibrium can only be obtained with the large number

of (very small) droplets created by homogeneous

nucleation. The modelling of condensing flows therefore

requires properties at supercooled conditions, normally

obtained by extrapolation of the vapor equation of state

to conditions inside saturation. In addition a theory for

nucleation of droplets out of its vapor is required, this is

obtained through refinements to Classical nucleation

theory.

The fine distribution of droplets, once present in the

flow field, require models for the heat and mass transfer

between the droplet and vapor phase. Since the droplets

appear in the vapor as very small particles (10�10–10�9

m), and grow several orders of magnitude in a very short

period of time, the heat transfer requires a Knudsen

number dependence to cover the free-molecule regime to

continuum conditions. The heat transfer following

nucleation results in almost all of the latent heat liber-

ated toward the vapor phase. The droplet and vapor

temperature both vary approaching saturation condi-

tions.

The two-phase system can be reduced in complexity

by employing a no-slip condition between the phases

and, for steam, determining the droplet temperature

based on capillarity considerations. The details of these

assumptions will be discussed subsequently. Applying

the assumptions results in a system of equations for the

vapor phase, with dependent variables for momentum

and mass, u, v, w, p, and for total energy Hg (plus tur-

bulence). Similarly for the liquid phase an equation for

mass conservation, with dependent variable a, and for

droplet number conservation N . Interaction between the

phases is through source terms. The formulation is ex-

pressed mathematically in the following sections.

2.1. Vapor phase governing equations

2.1.1. Mass conservation of the vapor phase

A mass conservation equation for the vapor phase

then is expressed with a mass source (Sm) to reflect the

condensation and vaporization processes present:

oqg

ot
þ
oðqgujÞ
oxj

¼ Sm; ð1Þ
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where qg is the vapor (gas) density and uj is the j-wise
velocity component of the gas. In Eq. (1) a positive Sm
corresponds to the case of evaporation, while for the

condensation process Sm is negative. The formulation

for Sm is given in Section 2.3.
2.1.2. Momentum conservation of the vapor phase

The vapor momentum equations are based on the

Reynolds Averaged Navier–Stokes equations (RANS)

for three-dimensional turbulent flow, and require a

turbulence model to represent the turbulent Reynolds

stress terms [16]. The type of turbulence model is not of

importance to the condensation model methodology,

and the well-established high-Reynolds number j–�
turbulent model is applied in the present case. The

influence of turbulence is introduced through an eddy

viscosity, which is added to the molecular viscosity to

obtain an effective viscosity (leff ). The momentum

equations then appear as

oðqguiÞ
ot

þ
oðqgujuiÞ

oxj
¼ o

oxj
leff

oui
oxj

� �
� op
oxi

þ SFi þ Sui ;

ð2Þ

where the source term SFi contains the smaller terms

from the gradient of the Reynolds stress tensor. In

general, for compressible turbulent flow SFi is

SFi ¼
o

oxj
leff

ouj
oxi

��
� 2

3
dij

ouk
oxk

��
; ð3Þ

where d is the Kronecker delta function, and the source

term Sui represents the interphase momentum transfer,

described subsequently in greater detail.

2.1.3. Energy conservation of the vapor phase

The high-speed energy equation contains source

terms representing useful viscous work (Sw) and viscous

dissipation (Sd) with the dependent variable the gas total

enthalpy (Hg), and has the form

oðqgHgÞ
ot

þ
oðqgujHgÞ

oxj
¼ op

ot
þ o

oxj
keff

oTg
oxj

� �
þ Sw

þ Sd þ Sh; ð4Þ

where Tg is the gas temperature, and keff the effective

thermal conductivity. The total enthalpy is defined as

Hg ¼ hg þ uiui=2þ j, where hg is the vapor specific en-

thalpy and j the turbulent kinetic energy. In Eq. (4),

Sw þ Sd represents the total viscous stress energy con-

tribution:

Sw þ Sd ¼
o

oxj
ðuisijÞ; ð5Þ

where sij is the viscous stress tensor. The source term Sh
contains the interphase heat transfer to be described

subsequently.
2.1.4. Turbulent closures

As already mentioned the turbulence equation em-

ployed is the high-Reynolds number j–� model. The

liquid droplets, of sub-micron size, occupy little volume

in the flow and on this basis it is assumed that the

droplets have no direct influence on the turbulence.

However, there is an indirect influence through the

velocity field introduced to the j–� equations in each

iteration. The turbulence in the vapor phase does have

an influence on the dispersion of the droplets and will be

included in the liquid phase equations as shown subse-

quently. The equations for the turbulence model are not

documented here for brevity, but are however well

documented elsewhere [17].
2.2. Liquid phase governing equations

The equations describing the liquid phase are sim-

plified by several assumptions particular to condensing

steam flows. These are in order:

• The droplets being very small travel at the vapor

velocity allowing Eq. (2) to be used for determining

the liquid phase velocity. This assumption applies

only to the mean velocity field, while instantaneous

velocity components of the phases differ leading to

turbulent mixing of the dispersed phase.

• The droplets do not appear at high mass fractions

therefore the volume occupied by the liquid can be

neglected. This justifies not solving volume fraction

equations to separate the phases.

• Due to the small sizes of the droplets, their tempera-

ture (assumed uniform through the droplet) can be

determined by capillarity (i.e. surface tension) condi-

tions eliminating the need for a mass transfer model

[18].
2.2.1. Droplet nucleation

The appearance of a second phase (liquid) is gov-

erned by the process of homogeneous nucleation [19].

The formation of very fine spherical droplets, with a

large cumulative surface area, can only be achieved

when a free-energy barrier to forming such droplets is

overcome. At large levels of supercooling, for steam in

the range of 30–50 K depending on expansion rate, en-

ough droplets are able to pass the free-energy barrier to

significantly influence the temperature in the vapor

phase. The heat and mass transfer between the released

finely dispersed droplets and its vapor brings the flow

back to near equilibrium conditions. At these high levels

of supercooling the critical droplet radius is very small

given by the equation

r� ¼ 2r
qfDGg

; ð6Þ
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where DGg is the bulk Gibbs free energy change of the

gas phase and is calculated from the equation of state

(see Appendix A), qf is the density of the fluid (liquid)

water, and r is the liquid surface tension. The number of

droplets formed is obtained from Classical nucleation

theory [19]:

J ¼ qc
1þ g

2r
pm3

� �1=2 q2
g

qf

exp

 
� 4pr�

2

r
3KTg

!
; ð7Þ

where

g ¼ 2
c� 1

cþ 1

hfg
RTg

hfg
RTg

�
� 1

2

�
ð8Þ

and qc is a condensation coefficient (generally taken as

1), K Boltzmann’s constant, m the mass of one water

molecule, and hfg is the equilibrium latent heat. The

specific heat ratio and gas constant of the vapor are c
and R, respectively. It should be noted that the choice of

surface tension influences the nucleation rate J signifi-

cantly, and there is debate concerning the validity of

using a bulk liquid surface tension (as generally applied)

for very small droplet clusters. The surface tension used

here is that for bulk water with some adjustments to

improve comparison with experiments as outlined in

[10].

2.2.2. Droplet temperature

For very small droplets (r < 1 lm) the temperature

can be determined by the capillarity effects [18] so that

Tp ¼ TsðpÞ � ½TsðpÞ � Tg�
r�

�r
¼ TsðpÞ � Tsc

r�

�r
; ð9Þ

where Tg is the vapor temperature and Ts the saturation

temperature at the local pressure p.

2.2.3. Droplet growth rate

From an energy balance around a small spherical

droplet undergoing phase change in a pure medium we

can estimate the rate of change in the droplet radius

beginning with

ðhg � hpÞ
dmp

dt
¼ apkgðTp � TgÞ þ mpcpf

dTp
dt

; ð10Þ

where mp is the mass of a single liquid droplet

(¼ 4=3qfpr
3), ap is the surface area of a single droplet

(¼ 4pr2), cpf is the specific heat of the fluid (liquid), and

kg is the convective heat transfer coefficient between a

liquid droplet and its surrounding (gas).

In Eq. (10) dmp=dt is the mass condensation (or

evaporation) rate over the surface of the droplet,

(hg � hp) is the local latent heat per unit mass and

(hg � hpÞdmp=dt is the rate of latent heat to be removed

or added. In condensation a part of the latent heat

moves toward the vapor via convection, while the

remaining portion raises the temperature of the droplet.
It is possible to neglect the droplet heating term since

this component (for sub-micron droplets) is very small

relative to the particle-gas convective heat transfer. This

results in a simplified relation of the form

4qfpr
2ðhg � hpÞ

dr
dt

¼ 4pr2kgðTp � TgÞ;

or more compactly

dr
dt

¼ kgðTp � TgÞ
ðhg � hpÞqf

: ð11Þ

For the small droplets present from homogeneous

nucleation the heat transfer coefficient kg must be

modified to account for Knudsen (Kn) number effects. A

heat transfer coefficient with this dependence, and

appropriate for steam, was developed by Gyarmathy

[18] with the general form

kg �
Nukg
2r

¼ kg
rð1þ cKnÞ ; ð12Þ

where Nu is the Nusselt number and kg is the vapor

thermal conductivity. The constant c, for this work, is

determined on the basis of a model presented by White

and Young [4].

2.2.4. Mass conservation of the liquid phase

With the assumption that the volume occupied by the

liquid in the mixture control volume is very small, a

scalar quantity, a, is used to represent the mass fraction

of liquid water to water vapor present in the control

volume (i.e. a � mf=mg). Based on a an equation for the

mass conservation of the liquid phase can be developed.

Since the flow is turbulent the conservation equation for

liquid mass should represent both the mean flow and

turbulent dispersion influences on the trajectory of the

droplets. To do so we start from an instantaneous

equation for the conservation of liquid mass:

oðqgaÞ
ot

þ
oðqgaufjÞ

oxj
¼ Sa; ð13Þ

where the source term Sa represents the condensation

rate of vapor (Sa > 0 for condensation), and ufj repre-

sents the liquid phase velocity.

For compressible turbulent flows Favre-averaging of

a general scalar variable /, denoted by /̂, is obtained in

the following manner (see [20] for details):

/̂ ¼
ðqg/Þ
qg

; where / ¼ /̂þ /00 ð14Þ

while the time-averaging of a conservative variable

(qg/), denoted by ðqg/Þ, is defined by

ðqg/Þ �
1

DT

Z tþDT

t
ðqg/Þdt and ðqg/Þ ¼ ðqg/Þþ ðqg/Þ

0
;

ð15Þ
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where / 2 f1; a; ufj ; etc:g, and DT is a time interval, an

interval assumed long w.r.t. the time scales of turbulence

and short w.r.t. those of the mean flow.

In Eqs. (14) and (15) ‘‘b ’’ and ‘‘� ’’ represent Favre-
and time-averaging, respectively. With this nomencla-

ture, it can be shown that the time-averaging of Eq. (13)

becomes

o qg ba� �
ot

þ
o qg ba bufj

� �
oxj

¼ o

oxj

�
� qga00u

00
fj

�
þ Sa: ð16Þ

In Eq. (16) bufj is the Favre-averaged liquid phase

velocity, and is taken to be equal to that of the gas phase

by assuming no-slip between the phases, i.e.bufj ¼ buj: ð17Þ

In addition the variable u00fj represents the fluctuations
of the liquid droplet w.r.t. the liquid phase Favre-aver-

aged velocity.

The first term on the RHS of Eq. (16) is similar to

the Reynolds stress term in the Reynolds-averaged

momentum equations, and can be approximated by

using an analogy to the Boussinesq eddy viscosity model

so that�
� qga00u

00
fj

�
¼ Ct

oba
oxj

; ð18Þ

where Ct plays a role similar to the eddy viscosity, and is

equal to Ct � lt=Prt. The turbulent Prandtl, Prt, has a

value of 0.9 in the present model.

Finally a scalar equation representing the conserva-

tion of the liquid phase, and including turbulent dis-

persion, is obtained (after dropping ‘‘�’’ and ‘‘b’’):
oðqgaÞ
ot

þ
oðqgujaÞ

oxj
¼ o

oxj
Ct

oa
oxj

� �
þ Sa: ð19Þ

The source term Sa in Eq. (19) is identical to the gas

phase source, see Eq. (1), but opposite in sign (i.e.

Sa ¼ �Sm). All the source terms are described in Section

2.3.
2.2.5. Conservation of droplet numbers

To adequately model the liquid phase the number of

droplets is required to estimate the droplet surface area

available for heat transfer. The equation for droplet

numbers can account for the introduction of droplets at

boundaries or by nucleation. The equation is

oðqgNÞ
ot

þ
oðqgujNÞ

oxj
¼ SN ; ð20Þ

where N is the number of droplets per unit mass of

vapor (N � #=mg), and the source term SN ð¼ J ) is

obtained according to the nucleation model of Section

2.2.1.
2.2.6. Auxiliary relations

To help in the development of the interphase source

terms, and calculation of important quantities such as

droplet size, some auxiliary relations are described here.

Through a relationship between a and N , an average

droplet mass is obtained as

�mp ¼
a
N
; ð21Þ

where �mp ¼ 4=3pqf�r
3. Therefore, an average droplet

radius can be isolated as

�r ¼ 3a
4qfpN

� �1=3

: ð22Þ

Calculating the droplet size in this manner assumes

the droplet distribution can be adequately represented

by an equivalent mono-dispersion of a mean size. If

nucleation occurs at other distinct locations in the flow

path, perhaps in a subsequent flow expansion, an addi-

tional set of equations for a and N would need to be

solved to represent an additional droplet size range

present.

Along with the average radius a droplet interfacial

area density (b) is also defined, which is the sum of the

interfacial surface areas per unit mass of the vapor:

b � N�ap ¼
3a
qf�r

; ð23Þ

where �ap (¼ 4p�r2) is the average interfacial surface area

of a single droplet. Using Eq. (23), an average droplet

radius can be alternatively calculated as

�r ¼ 3a
qfb

: ð24Þ
2.3. Source terms

Using the solution variables available at the begin-

ning of a new time step, the droplet rate of growth (Eq.

(11)), the droplet radius (Eq. (24)) and the droplet

interfacial area density (Eq. (23)) can be calculated.

Using this information the source terms can be com-

puted as follows:

• Liquid scalar. The mass source to the liquid scalar

equation, Sa with the units of [kgf /(m
3 s)], is obtained

by considering the mass growth rate of a droplet of

size �r. With N as the total number of droplets per unit

vapor mass, the mass condensation rate of all the

droplets per unit volume of vapor is obtained by

Sa ¼ qgNd�mp=dt. With N�ap being the interfacial area

of all droplets per unit vapor mass, and using the def-

inition of b, it can be shown that

Sa ¼ qfb
dr
dt

qg: ð25Þ
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• Droplet number. The source term for droplet numbers

is obtained according to the nucleation model, as de-

scribed in Section 2.2.1.

SN ¼ J ; ð26Þ

where J has the units [#/(m3 s)].

• Vapor mass. The gas phase source term is equal and

opposite to that of the liquid phase, i.e.

Sm ¼ �Sa: ð27Þ

• Vapor momentum

Sui ¼ �Saui: ð28Þ

• Vapor energy

Sh ¼ �Sahp; ð29Þ

where hp is the enthalpy of a liquid droplet. If the

contribution of surface energy is ignored, hp is

determined as a function of droplet temperature only.

The vapor energy equation source term thus repre-

sents the sensible heat related to the droplet temper-

ature rise. The latent heat release to the vapor phase

is included implicitly in the definition of the vapor

phase enthalpy (i.e. hg ¼ hf þ hfg), which is incorpo-

rated in the total enthalpy, Hg.

2.4. Supercooled properties

The evaluation of properties in this model was based

on the thermodynamic database for steam by Vukalo-

vich [21]. This database utilizes an equation-of-state

(EOS) based on a series of virial coefficients appearing as

functions of temperature only, written in the form of

p ¼ qgRTgðB1 þ B2qg þ B3q
2
g þ B4q

3
gÞ; ð30Þ

where p, qg and Tg are pressure, density and temperature

of the vapor phase, respectively, and B1 to B4 are the

virial coefficients described in Appendix A. This EOS

was tested for extrapolation into supercooled states at

low and high pressures [22]. A detailed description of the

thermodynamic database implemented in the present

computation is provided in Appendix A.

2.5. Numerical model

The model developed has been implemented within

the commercial CFD code CFX-TASCflow. Discreti-

zation follows the finite-volume/finite-element approach

[23]. The vapor phase conservation equations employed

second order discretization, and the solution of the

hydrodynamic equations (u, v, w and p) was obtained by

a coupled (non-segregated) approach [24,25]. The liquid

phase equations experience a sharp discontinuity near

the nucleation front and a bounded upwind (first order)

scheme was employed for Eqs. (19) and (20). Solutions
for all equations are accelerated using an algebraic

multi-grid procedure [25]. The solutions presented in this

paper were converged to normalized RMS residuals of

the order of 10�5 or lower and global conservation

(normalized by the inflow flux) of 10�4 or better (for all

conservation equations).

2.5.1. Solution strategy

The liquid and gas phase conservation equations are

discretized using a conservative finite-volume integra-

tion over a control volume. The discretization of the

conservation equations, in the context of a finite-element

representation of the geometry, is as follows for a gen-

eral scalar /:

qgVcv
/� /o

Dt

� �
þ
X
ip

_mip/ip

¼
X
ip

C/
o/
oxj

Dnj

� �
ip

þ S/Vcv; ð31Þ

where

_mip ¼ ðqg~u � DnÞ
o
ip ð32Þ

and Vcv is the volume of the control volume, the sub-

script ‘‘ip’’ denotes an integration point, the summation

is over all the integration points of the surface, Dn is the

outward unit vector of discrete surface, Dt is the time

step, the superscripts o means property evaluation at the

old time level, and ~u is the velocity vector. In Fig. 1 is

shown the location of the integration points relative to

the flux element and control volume faces.

The source terms relevant to condensation and

evaporation for the momentum and liquid scalar equa-

tions (Eqs. (25)–(29)) are applied over the control vol-

ume, and can be linearized into passive and active terms

to promote covergence of the discrete equation set. The

linearized source equations can be cast into the general

form
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S/ ¼ S/o þ S/0/0; ð33Þ

where S/o is the passive source evaluated using old time

step values, i.e. /o, and S/0 an active coefficient multi-

plied by changes in the dependent variable (i.e.

/0 ¼ /� /o). It should be noted that only when nega-

tive is the active coefficient applied or else it is assumed

zero. This promotes diagonal dominance in the discrete

equation set.

The passive source term for the liquid phase a
equation is

So
a ¼ qfb

dr
dt

qg: ð34Þ

Similarly the passive source term (for the condensa-

tion/evaporation influence) for the i-wise momentum

equation becomes

So
ui
¼ �qfb

dr
dt

qgu
o
i : ð35Þ

The active coefficients are obtained by partial differ-

entiation of S/ w.r.t. / (i.e. oS/=o/) so that for the liquid

scalar

Sa0 ¼ 3qg

dr
dt

1

�r
: ð36Þ

Note that to obtain Eq. (36) the definition for b (see

Eq. (23)) was substituted into the formula for Sa and

differentiating that w.r.t. a. Similarly the active coeffi-

cients of the interphase momentum source terms are

Su0 ¼ Sv0 ¼ Sw0 ¼ �Sa ¼ �qfb
dr
dt

qg: ð37Þ

In the case of the energy source no active term is

applied since the dependent variable Hg is not present in

Sh. Similarly no active term is applied for the droplet

number equation.

The present model emphasizes an implicit pressure

based solution method. The large times steps that can be

employed can lead to very large sources, particularly in

the vicinity of the nucleation front. Control of the source

is based on utilizing an estimate (from the solution) of

the vapor mass flow, ( _mg), through the control volume

(either inflow or outflow). The passive part of the liquid

mass source term is constrained through the relation

So
a ¼ minðminðSo

aVcv; f _mgÞ; f _mgÞ=Vcv; ð38Þ

where f is a mass fraction that, when multiplied with the

control volume vapor flow, provides a scaled bounding

for the mass source Sa. The value of f can be chosen

from experimental studies, for example in homogeneous

nucleation in nozzles, 3–6% of the mass flow is con-

verted to liquid during the reversion (to equilibrium)

process. The lower limit of 3% can be used, since in a

reasonably discretized flow domain this amount of mass
would not be transferred within a single control volume.

The bounding implied in the use of Eq. (38) is only

effective during initial start-up of the solution (when a

steady-state solution is sought) and disappears within a

few time steps as the solution develops. Furthermore the

source term, Sa, is heavily relaxed from between itera-

tions, here it was found that relaxation in the vicinity of

0.2 (of the new computed value) was effective. The

strategies described here allowed the implicit solution

procedure to use time steps much larger than those im-

plied by local CFL limits.

The grid employed hexahedral mesh elements (finite-

elements) filling out the domain as shown in Fig. 1, with

control volumes derived around the element vertices.

Following a finite-volume/finite-element discretization

procedure [23], the control volume equations (for scalar

equations such as a) can be represented in the general

form

aP/P þ
X

anb/nb ¼ SVcv; ð39Þ

where /P is the value of / at node P (with a central

coefficient aP), /nb refers to the neighboring nodal val-

ues, and anb the coefficients linking node P to its

neighbors. The coefficients include contributions from

temporal, convective and diffusive terms.

If the dependent variable is further defined as

/ ¼ /o þ /0, then Eq. (39) can be rearranged into a

correction form

aP/
0
P þ

X
anb/

0
nb ¼ R; ð40Þ

where R is a residual that should be reduced to zero at

convergence and appears as

R ¼ � aP/
o
P

�
þ
X

anb/
o
nb � SVcv

�
: ð41Þ

In this context the source term S for the liquid scalar

equation (/ ¼ a) appears as

S ¼ Sao ð42Þ

and the diagonal coefficient term in aP,

aP ¼ �
X

anb � Sa0Vcv: ð43Þ

Similar adjustments are made to all governing equa-

tions. In the above discussion adjustments to aP and S
for transients has not been included but can be found in

[23]. The discrete equations are then solved using an

algebraic multi-grid approach [25]. The discrete equa-

tions for momentum and mass (or pressure) are coupled

and solved directly for the hydrodynamic variables [24].

This by-passes the necessity for segregated iterative

procedures such as the popular SIMPLE methods to

resolve the pressure–velocity coupling in the flow. The

method present here is not limited to a particular ap-

proach for resolving the pressure–velocity coupling.
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3. Validation

3.1. Laval nozzle with nucleation at low and high pressure

[2,3]

To validate the model the first set of test cases con-

sisted of supersonic nozzle flow at high and low pres-

sures. The low-pressure data (below 1 bar) of Moore

et al. [2] was used and the results are shown in Fig.

2(Top) for Nozzle A. As is apparent the predicted

centreline pressure profile is very good including the

condensation shock location, however results for the

droplet size are over-predicted. To show that the model
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Fig. 2. Comparisons between the proposed model and experi-

ments for centerline pressure and droplet radius. (Top) Low-

pressure case, comparisons with nozzle ‘‘A’’ taken from Moore

et al. [2]. (Bottom) High-pressure case, comparisons with nozzle

‘‘L’’ from Bakhtar and Zidi [3]. The horizontal axis is non-

dimensionalized w.r.t. throat opening.
predicts important details of homogeneous nucleation

Fig. 3(Top) is provided for the low-pressure results. In

these results the nucleation event is preceded by super-

cooling of the vapor phase as shown in parts (a) and (c).

The flow wetness only becomes significant after peak

nucleation is reached and the vapor temperature returns

to near equilibrium as seen in parts (a)–(c). The flow is

supersonic in the diverging portion of nozzle, with

deceleration of the flow through the nucleation zone as

seen by the Mach number profile in Fig. 3(Top) part (d).

It should be noted that Mach number profiles in these

figures bear the frozen values, which are obtained based

on vapor phase speed of sound. The boundary condi-

tions employed for these results were inlet total pressure

of 25 kPa and total temperature of 354.6 K.

Since the thermodynamic properties database em-

ployed can also be used for high-pressure supercooled

steam, a high-pressure nozzle test was also conducted.

Using the data (Nozzle L) reported in Bahktar and Zidi

[3], a supersonic nozzle with inlet total pressure of 32 bar

and total temperature of 544 K was employed. The

predicted centreline pressure is compared to the experi-

mental data with good results, and, the droplet radius is

very well-predicted at the measured location of 1%

wetness fraction. The Wilson point corresponding to

these results is 11.3 bar. The maximum supercooling just

before nucleation is �30 K, and is in agreement with

the limiting supercooling curve provided by Bahktar and

Zidi [3] as a function of Wilson point (11.3 bar) and

expansion rate (in this case _p � 20; 000). The physical

features of this test case are shown in Fig. 3(Bottom),

parts (a)–(d). Similar behavior to that of the low-pres-

sure (LP) case were obtained with a few highlights ex-

plained here. The nucleation rate is much higher in the

high pressure (HP) case primarily due to the higher

density ratio of the vapor to the liquid (see Eq. (7)). This

results in a larger contribution to the source term Sa
and, as a result, the wetness fraction in the HP-case is

larger than that in the LP-case (see Fig. 3(Top) and

(Bottom) part (c) for comparison). In addition, due to

the higher density of the vapor in the HP flow, the in-

creased fluid inertia decreases the response (as shown by

the Mach number profiles in part (d) of Fig. 3(Top) and

(Bottom)) to the condensation front as compared to the

LP case.

3.2. Rotor-tip cascade [6]

To test the model in a more complex situation, the

rotor-tip experimental data of Bahktar et al. [6] was used

for comparison. Fig. 4(Top) shows the blade geometry

under study, and the computational domain surround-

ing the blade, subdivided into seven blocks (grid sizes

shown in each block) to provide a grid topology con-

formed to the blade geometry. Fig. 4(Bottom) shows the

grid configuration around the blade, with close-ups near
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the leading and trailing edges of the blade. The case for

inlet total conditions of 0.999 bar with 10 K super-
cooling level at the inlet was employed, with the exit

pressure of 0.427 bar.
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The calculated blade pressure profile is compared to

experimental values in Fig. 5. The comparison with

experiment is good on the pressure side, and the con-

densation shock along the suction side has been cap-

tured reasonably well. However, agreement with data

along the suction side near the trailing edge is not so

good. The prediction of other features of the flow are

shown in Figs. 6–8.

Fig. 6(Top) and (Bottom) shows isobar and iso-

Mach lines around the blade. The flow stream of the

suction side is subject to a stronger expansion rate as

compared to that of the pressure side. As a result, close

to the trailing edge a large pressure difference between

the pressure and suction sides exists (see Fig. 6(Top)).
Beyond the blade both flow streams mix and should

come to equilibrium. This requires the suction side

stream to pass through a shock, and the pressure side

stream to follow an expansion fan beginning at the

trailing edge. As shown in Fig. 6, the hydrodynamics

of the flow around the blade have been properly cap-

tured.

The nucleation rate in the flow is presented in Fig.

7(Top). As is apparent in this figure the nucleation front

is captured between the blades, with significant nucle-

ation occurring first along the suction side. The peak

nucleation level occurs close to the expansion fan at the

trailing edge of the pressure side. Fig. 7(Bottom) shows

the supercooling levels. As can be seen supercooling

levels increase up to the point just ahead of the nucle-

ation front to a maximum value of �45 K. Following

nucleation the flow reverts toward equilibrium condi-

tions and supercooling levels decrease. Flow passing

through the oblique shock starting from the trailing edge

at the suction side, leads to the vapor superheating

(negative supercooling indicates superheating) and some

evaporation of the liquid present.

The distribution of the liquid in the flow is shown in

Fig. 8 via the wetness fraction. As is apparent in this

figure the flow remains dry prior to nucleation. Just past

nucleation the wetness increases rapidly to �3.5% fol-

lowing which wetness levels gradually increase. Partial

evaporation of the moisture is also observed through the

oblique shock at the suction side of the trailing edge

where the wetness fraction reduces from 5% to �4%.

These flow features are consistent with that obtained by

previous studies using different modelling approaches

[5,8,9].
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4. Conclusions

An Eulerian–Eulerian multi-phase model has been

presented for homogeneous nucleation in transonic

turbulent steam flow. The model has been presented in

the context of an implicit pressure-based finite-volume

scheme applicable to flow at all speeds. Specific handling

of source terms for an implicit approach, that can utilize

large time-steps in obtaining steady-state solutions (or in

transient simulations), is described. Excellent conver-

gence behavior was obtained for all equations on the

cases tested, with global conservation 10�4 or better (for

all conservation equations), and normalized RMS

residuals of the order of 10�5 or lower.

A scalar equation was presented to model the mass

conservation of the liquid droplets, which takes into
account the dispersive motion of the liquid droplet w.r.t.

vapor phase. A term analogous to the Reynolds stress

term appears in this equation (�qga00u
00
fj ) and is modelled

based on the Boussinesq eddy viscosity model by

substituting Ctðoba=oxj). In conjunction with the liquid

scalar equation, a droplet number equation is utilized

for estimating the interfacial area density in the flow.

The two-phase model was subsequently applied to low-

and high-pressure nucleating steam flow in the Laval

nozzle and a rotor-tip section. Reasonable agreement

with experimental data has been obtained; especially for

the pressure distribution. The physical features, typical

of flows with homogeneous nucleation, have been cap-

tured and compare well with results previously obtained

with other numerical schemes.
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The present model has the potential for efficiently

examining large multi-stage turbines where moisture is

generated under non-equilibrium conditions. The im-

plicit Eulerian–Eulerian formulation is amenable to

efficient parallel execution, and because large time steps

can be chosen, difficult transient flow situations can be

examined efficiently. In this regard future research will

apply the model to 3D rotor-stator stage cases with

transient component interactions. Methods will also be

examined for calculating cases with a bi-model droplet

size distribution. In the present model the droplet dis-

tribution is assumed to be adequately represented by an

equivalent mono-dispersion of a mean size. This

assumption will not be appropriate for 3D models where

droplet formation can occur over several stages,

including secondary nucleation.
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Appendix A

For the present non-equilibrium fluid flow calcula-

tions the following thermodynamics relationships (in

addition to the virial equations of state, given by Eq.

(30)) were required for the liquid and vapor phases:

specific enthalpy (h), isobaric and isochoric specific heats

(cp and cv), and speed of sound (C) (only for the vapor

phase).
A.1. Superheat state equations

The following equations describe properties in the

superheated gas phase and, by extrapolation, informa-

tion on the gas properties in the supercooled regions of

the flow [21,22]:

hg ¼ pvg � RT 2
g

1

vg

dB2

dTg

 
þ 1

2v2g

dB3

dTg
þ 1

3v3g

dB4

dTg

!
þ 1:111177Tg þ 3:55878� 10�4T 2

g

� 6991:96

Tg
þ 2070:54; ðA:1Þ

cvg ¼
o

oTg
ðhg � pvgÞvg ; cpg ¼ cvg �

Tgðop=oTgÞ2vg
ðop=ovgÞTg

; ðA:2Þ

Cg ¼ vg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
cpg
cvg

op
ovg

� �
Tg

s
; R ¼ 461:51

J
kg s

; ðA:3Þ

where vg (¼ 1=qg), is the specific volume of the vapor (or

gas), hg gas enthalpy, p pressure, Tg gas temperature, cvg
and cpg gas specific heats, Cg gas speed of sound, R gas

constant and B1–B4 the virial coefficients which are

functions of gas temperature only.

The change in the bulk Gibbs free energy of the gas

phase (DGg) is also needed to determine the critical ra-

dius at which droplets are nucleated. The value of DGg

depends on the equation of state used, and for the virial

equation of state used in the present computation it is

calculated as follows:

DGg

RTg
¼ � ln

qg

qsðTgÞ
þ 2B2fqsðTgÞ � qgg

þ 3

2
B3 q2

s ðTgÞ
n

� q2
g

o
þ 4

3
B4 q3

s ðTgÞ
n

� q3
g

o
;

ðA:4Þ

where qsðTgÞ is the saturated vapor density at the

local gas temperature Tg, and B2–B4 are the virial coef-

ficients.

A.2. Liquid state equations

For non-equilibrium flow calculations with water

droplet nucleation properties for the liquid phase are

required. When calculating liquid water properties, at

saturation, care has to be taken to assure that these

properties are consistent with the vapor phase properties

at saturation. A reasonably simple approach is to use a

saturation curve obtained by experiment, and an

empirical liquid density curve as a function of temper-

ature. The liquid properties are assumed not to change

with pressure.

With this empirical information available, the liquid

properties can then be obtained using the gas phase
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equations of state, Eq. (30), and the Clapeyron equa-

tion. The resulting relations for the liquid properties

are [26]

cpfs ¼ cpgs � vfgTs
d2ps
dT 2

s

� 2Ts
dps
dTs

� �
agvg
�

� afvf
�

þ Ts
dps
dTs

� �2

ðbgvg � bfvfÞ; ðA:5Þ

hfs ¼ hgs � vfgTs
dps
dTs

; ðA:6Þ

where cpfs is the liquid specific heat at saturated tem-

perature Ts, cpgs is the isobaric specific heat of gas at Ts,
vf specific volume of the liquid, vfg specific volume

change of evaporation, ps saturation pressure, and ag
and af are the isobaric coefficient of expansion for the

gas and liquid phases obtained from

agTg ¼ � Tg
qg

oqg

oTg

� �
p

¼
1þ B0

2qg þ B0
3q

2
g þ B0

4q
3
g

1þ 2B2qg þ 3B3q2
g þ 4B4q3

g

;

af ¼ � 1

qf

oqf

oTf

� �
p

;

ðA:7Þ

where

B0
2 ¼ B2 þ Tg

dB2

dTg
;

B0
3 ¼ B3 þ Tg

dB3

dTg
;

B0
4 ¼ B4 þ Tg

dB4

dTg
;

ðA:8Þ

and the isothermal coefficient of compressibility, bg and

bf , as follows:

bgp ¼ p
qg

oqg

op

� �
Tg

¼
1þ B2qg þ B3q2

g þ B4q3
g

1þ 2B2qg þ 3B3q2
g þ 4B4q3

g

;

bf ¼ 0:

ðA:9Þ
A.3. Required empirical equations

At this point all the necessary properties for the gas

and liquid phases have been defined. The reader will

note that five empirical equations are required to obtain

the preceding equations, namely, the second, third and

fourth virial coefficients, the saturation curve and the

liquid density curve.

These five equations are now presented beginning

with the second, third and fourth virial coefficients (note

that B1 ¼ 1), which are functions of gas temperature

only [21]:
B2 ¼ � e
GTg

� /1 þ b;

B3 ¼ �b/1 þ 4/2
1/2;

B4 ¼ 32b/2
1/2;

ðA:10Þ

where

/1 ¼
CG

T ð3þ2m1Þ=2
g

; /2 ¼ 1� 22:7

T ð3m2�4m1Þ=2
g

and

e ¼ 63:2; b ¼ 0:85� 10�3; C ¼ 0:39� 106;

G ¼ 47:053; m1 ¼ 1:968; m2 ¼ 2:957:

The saturation curve [27]

ps
pc

¼ exp s10�5ðtc

"
� tÞ

X8
i¼1

Fið0:65� 0:01tÞi�1

#
; ðA:11Þ

where

s ¼ 1000=Ts; t ¼ Ts � 273:15; pc ¼ 220:88 bars;

tc ¼ 374:136 �C;

F1 ¼ �741:9242; F2 ¼ �29:72100;

F3 ¼ �11:55286; F4 ¼ �0:8685635;

F5 ¼ 0:1094098 F6 ¼ 0:439993 F7 ¼ 0:2520658

F8 ¼ 0:05218684:

Finally the liquid density as a function of temperature

[26] completes the list of empirical equations. Here it is

assumed that pressure does not significantly influence

the liquid density, which is a valid assumption for wet

steam applications.

qf ¼
X3
i¼0

aisi; ðA:12Þ

where,

s ¼ Ts
647:286

and

a0 ¼ 928:08; a1 ¼ 464:63; a2 ¼ �568:46;

a3 ¼ �255:17:

The preceding equations defining thermodynamic

properties for steam are applicable for equilibrium or

non-equilibrium steam calculations, provided super-

heated conditions are in the range of 0.01–100 bar and

273.15–1000 K. The liquid properties are subject to the

constraint that the influence of pressure has been ne-

glected in the liquid density equation.
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